

CNPJ 35.949.131/0001-02 - CREA-SC - 174.451-0 Rua Carlos Gosmes, 14 - Sala 05, Centro, Concórdia - SC

RUA COBERTA AVENIDA DEZOITO DE FEVEREIRO PROJETO ESTRUTURAL ESTRUTURA DE CONCRETO ARMADO

PROJETO ESTRUTURAL - CONCRETO ARMADO

MEMORIAL DESCRITIVO

FERRARI ENGENHARIA

FERRARI ENGENHARIA LTDA.

CNPJ 35.949.131/0001-02 - CREA-SC - 174.451-0 Rua Carlos Gosmes, 14 - Sala 05, Centro, Concórdia - SC

Sumário

1	INTRODUÇÃO	4
2	ORIENTAÇÕES GERAIS	
2.1	Relação das Pranchas	
2.2	Projeto de Fundações	
2.3	Projeto de Estrutura de Concreto Armado	7
3	RECOMENDAÇÕES CONSTRUTIVAS	7
3.1	Armação Aço CA 50 / CA 60	
3.2	Concreto Inclusive Lançamento	8
3.3	Cimento	
3.4	Agregados	Erro! Indicador não definido.
3.5	Água	9
3.6	Aditivo	
3.7	Dosagem	10
3.8	Mistura e Adensamento	
3.9	Transporte do Concreto	12
3.10	Lançamento	12
3.11	Cura do Concreto	14
3.12	Equipamentos	14
3.13	Execução	15
3.14	Juntas de Concretagem	15
3.15	Inspeção do Concreto	16
4	FÔRMAS	
5	ESCORAMENTO	
6	DESMOLDAGEM DE FÔRMAS E ESCORAMENTOS	17
7	ARMADURAS	
8	DISPOSIÇÕES DIVERSAS	19
9	TESTES	20
10	TESTES DESTRUTIVOS – CORPO DE PROVA	20
10.1	Definição	
10.2	Moldagem e cura dos corpos-de-prova	20
11	ACEITAÇÃO DA ESTRUTURA	21
12	MEMÓRÍA DE CÁLCULO	
12.1	Critérios de dimensionamento	21
12.2	Resistência a compressão (classe)	21
12.3	Característica do concreto	22
12.4	Classe de agressividade ambiental (CA)	22
12.5	Propriedade do concreto	
12.6	Propriedade do aço	
12.7	Coeficiente de ponderação	
12.8	Combinações das ações	
12.9	Combinações das ações	
12.10	Imperfeições globais	26

CNPJ 35.949.131/0001-02 - CREA-SC - 174.451-0 Rua Carlos Gosmes, 14 - Sala 05, Centro, Concórdia - SC

12.11	Modelo de análise	26
	Verificação de estabilidade Global e não linearidade física	
	Verificação do deslocamento horizontal	
	Verificação de estabilidade	
	Considerações Finais	
	Alterações de Projeto	
13.2	Fiscalização	27
13.3	Obrigação da Executora	
13.4	Aceitação final da obra de estrutura de concreto armado	

CNPJ 35.949.131/0001-02 - CREA-SC - 174.451-0 Rua Carlos Gosmes, 14 - Sala 05, Centro, Concórdia - SC

MEMORIAL DESCRITIVO

PROJETO DE ESTRUTURA EM CONCRETO ARMADO

1 INTRODUÇÃO

Os projetos das estruturas de concreto armado das fundações com a função de proporcionar ancoragem para a estrutura metálica de cobertura da Rua Coberta, bem como, a estrutura do palco e casa de máquinas, foram elaborados visando garantir a durabilidade das estruturas com adequada segurança, estabilidade e aptidão em serviço durante o periodo correspondente a vida útil da estrutura.

No desenvolvimento considera-se todas as análise estruturais, a influência de todas as ações que possam produzir efeitos significativos para a estrutura, levando-se atender as exigências de Normas. A Memória ou o Roteiro de cálculo entregue junto com o Memorial Descritivo, informa e detalha os principais aspectos da solução adotada no Projeto da Estrutura de Concreto Armado, bem como, os critérios, apresentando e os procedimentos adotados, todos os carregamentos previstos e suas respectivas combinações. A escolha dos materiais, as resistências característica, as considerações relativas a ação do vento, variação de temperatura, fluência (deformação lenta) e retração, choques, vibrações, esforços repetidos, esforços provenientes do processo construtivo, limitações das deformações excessivas. Concepção Estrutural, Modelagem Estrutural, análise estrutural dos resultados do processamento da estrutura (ELS e ELU), Pórtico Espacial (Vigas, lajes e pilares) e a Estabilidade Global da estrutura, ou seja, considera-se todas as influência de todas as ações que possam produzir efeitos significativos para a estrutura preconizado na NBR 6118/2014.

Qualquer dúvida sobre eventuais alterações no posicionamento dos elementos estruturais, deverá ser consultada com a Fiscalização da Prefeitura.

O projeto, se utiliza de elementos resistentes de concreto armado usinado e aço ASTM A588.

Desta maneira, este memorial será dissertado em quatro grandes tópicos a saber:

- Orientações gerais;
- Projeto de estrutura;
- Projeto de estrutura em concreto armado usinado;
- Recomendações construtivas.

2 ORIENTAÇÕES GERAIS

A estrutura foi concebida em elementos hábeis para usufruir de todo o potencial que suas formas e relações internas e externas que oferecem. O projeto estrutural e o cálculo estático de todas as peças obedeceram às imposições de valor universal da estabilidade das construções e aos dispositivos das normas

CNPJ 35.949.131/0001-02 - CREA-SC - 174.451-0 Rua Carlos Gosmes, 14 - Sala 05, Centro, Concórdia - SC

brasileiras, particularmente da NBR-6118, NBR-6120 e NBR-6122. A construção deverá seguir rigorosamente as prescrições da NBR-14931 com relação aos procedimentos construtivos, cuidados e controle de materiais e elementos auxiliares de construção. O detalhamento do projeto deverá ser obedecido em todos os seus detalhes, sendo que, dúvidas de qualquer natureza serão dirimidas, em instância final obrigatória, com os autores do projeto.

No que segue, alguns itens de interesse mais geral serão destacados em caráter orientativo, não substituindo o conhecimento e aplicação dos textos normativos, inclusive aqueles outros todos referentes aos materiais a serem utilizados. Esta recomendação se estende, ainda, aos materiais não componentes diretos da estrutura, notadamente ao que tange aos blocos cerâmicos para alvenarias de fechamento.

Locação da Obra: A obra deverá ser locada com instrumentos de apurada precisão, capazes de determinar com erro máximo de um milésimo (1/1000) de metro a posição dos centros de gravidade e arestas dos blocos de fundação, pilares e vigas do baldrame, em seus diversos níveis. Todo dispositivo de memória da locação, auxiliar da construção, deve ter vida útil, em perfeita operação, compatível com o prazo previsto para uso, sem deformações ou deslocamentos. Alinhamentos e Posições: Em todas as etapas, em todos os níveis, a determinação da posição de qualquer elemento da estrutura será decisiva em seu desempenho, pois garantirá a correta inter-relação dele com os demais componentes da estrutura. Assim, não deve tolerar-se, divergências superiores a um milímetro na posição de cada peça, pois o somatório de erros poderia conduzir a resultados indesejáveis. Em especial, os desvios de prumo dos pilares devem ser implacavelmente descartados, pois introduziriam esforços não previstos por razões econômicas. Apenas as reservas obrigatórias da norma, insuficientes para fazer frente a excessos de qualquer natureza prejudicial à operação destes elementos, foram considerados neste projeto.

Memória Técnica: Todas as etapas de construção deverão ser cuidadosamente anotadas em diário próprio (um diário de obra, por exemplo), de forma que permita estabelecer com perfeição o estágio em que se encontra toda a obra por ocasião de qualquer evento de construção, como execução de qualquer elemento ou retirada de escoras, por exemplo.

2.1 Relação das Pranchas

Item	Nº da Prancha	Descrição	Nível
1	E01-15	LOCAÇÃO - PALCO	60
2	E02-15	FÔRMA E ARMADURA DAS SAPATAS	60
3	E03-15	VIGAS NIVEL 60 – FÔRMA E ARMADURA	60
4	E04-15	FÖRMAS VIGAS NIVEL 60-290	60-290
5	E05-15	FÔRMAS VIGAS NÍVEL 630 – CORTE AA – BB	630

CNPJ 35.949.131/0001-02 - CREA-SC - 174.451-0 Rua Carlos Gosmes, 14 - Sala 05, Centro, Concórdia - SC

6	E06-15	LAJES NÍVEL 290 – ARAMDURA POSITIVA E NEGATIVA	290
07	E-15	DETALHES DE RAMPA E ESCADAS	290
08	E08-15	PILARES NIVEL 290 – FÔRMA E ARMADURA	290
09	E09-15	VIGAS NÍVEL 290 – FÔRMA E ARMADURA	290
10	E10-15	LAJES NÍVEL 630 – ARMADURA POSITIVA E NEGATIVA	630
11	E11-15	PILARES-VIGAS NÍVEL 630 – FÔRMA E ARMADURA	630
12	E12-15	PLANTA DE LOCAÇÃO DOS BLOCOS – RUA COBERTA	267
13	E13-15	FÔRMA E ARMADURA – BLOCOS E SAPATAS	267
14	E14-15	FÔRMA E ARMADURA –CERCAS E BALIZADORES	267
15	E15-15	FÔRMA E ARMADURA – CHAFARIZ	267

Tabela 01 - Relação das pranchas

O corte esquemático a seguir demonstra os níveis descritos acima.

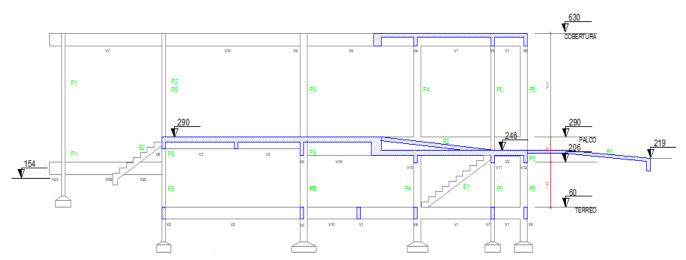


Figura 01 - Palco - Corte esquemático - indicação dos níveis

2.2 Projeto de Fundações

O projeto de fundações foi realizado a partir da apuração, por meio de cálculo estático, dos carregamentos a serem transmitidos para a infraestrutura.

Para a obtenção dos esforços nas fundações da estrutura do Palco, foram consideradas as cargas especificadas na NBR-6120, incluindo-se o peso próprio dos elementos estruturais de fundação e a obtenção dos esforços na fundação para a cobertura de estrutura metálica as cargas foram especificadas pelo projeto da estrutura metálica.

CNPJ 35.949.131/0001-02 - CREA-SC - 174.451-0 Rua Carlos Gosmes, 14 - Sala 05, Centro, Concórdia - SC

Optou-se pela solução de fundações diretas rasas com a utilização, de sapatas de concreto armado projetadas para atuar sobre terreno com capacidade de suporte de 4,0Kgf/cm².

Deverá ser aplicado previamente a regularização com brita com espessura de 10cm e um lastro de concreto magro com 5 cm de espessura para execução das sapatas.

Jamais concretar em presença de água, sem que cuidados especiais para contornar esta situação sejam adotados. É importante salientar que concretagens submersas têm procedimentos completamente diversos das demais operações de preenchimento de formas, cabendo ao engenheiro construtor adotá-los em toda sua extensão.

2.3 Projeto de Estrutura de Concreto Armado

Este empreendimento consta de 2 pavimentos (Palco) e 01 pavimento (Rua Coberta), executados em concreto armado usinado com fck > 30 Mpa. A estrutura do Palco consiste em adoção de lajes maciças, apoiadas em vigas e pilares, no nível 290 e 630.

O nível 60, consiste em viga e pilares e o piso em concreto armado apoiado no solo, com uma camada de material granular para a regularização.

As fundações da Rua Coberta, consiste em fundações diretas ancoradas em rocha conforme detalhado na prancha nº E13-15.

As dimensões de todos elementos estão elencadas no projeto. Os esforços foram apurados a partir de análise espacial elástica de modelo estrutural convenientemente proposto realizada por softwares de uso consagrado.

Foi adotado como resistência característica do concreto o valor de 30 MPa. O aço empregado é do tipo CA-50 e CA-60.

O dimensionamento de todos elementos seguiu incondicionalmente o prescrito pela NBR – 6118, quanto aos estados limites último e de utilização.

O projeto, dimensionamento e detalhamento de uma estrutura de concreto armado, tem como objetivo, quantificar todos os esforços que possam vir a atuar sobre a estrutura, de tal forma que está, em regime normal de serviço, possa absorvê-los, dentro de padrões de segurança normatizados. Os carregamentos e pesos específicos adotados no presente projeto são os seguintes:

- Peso específico do concreto armado: 2.500 kgf/m³;
- Peso específico de paredes divisórias de alvenaria: 1300 kgf/m³;
- Peso de revestimento em lajes: 150 kgf/m²;
- Cargas acidentais de acordo com a NBR 6120.

3 RECOMENDAÇÕES CONSTRUTIVAS

3.1 Armação Aço CA 50 / CA 60

O posicionamento da armadura será de acordo com o projeto estrutural visando traspasses, intercalagens, dobras, raio mínimo das dobras, espaçamento de estribos, sendo que o recobrimento da armadura nunca será menor que 3,0 cm para as peças que receberem revestimento, ou de acordo com o projeto estrutural,

CNPJ 35.949.131/0001-02 - CREA-SC - 174.451-0 Rua Carlos Gosmes, 14 - Sala 05, Centro, Concórdia - SC

desse modo a armação deverá receber pastilhas de argamassa, com a mesma resistência do concreto empregado e mesmo fator água/cimento, ou espaçadores plásticos adequados, em número suficiente e dimensões tais que permitam o perfeito posicionamento.

3.2 Concreto Inclusive Lançamento

Deverá ser usinado, salvo expressa autorização em contrário da fiscalização, com controle periódico e fator água/cimento entre 0,30 a 0,65 obtido através de aditivos adequados.

3.3 Cimento

O cimento recebido em obra deve ser acompanhado de documento que comprove o atendimento às especificações das normas vigentes correspondente ao período de produção do lote entregue.

Não deverá ser aceito se tiver sua embalagem original danificada no transporte, só podendo ser aberto quando de sua aplicação.

Deverá ser refugado cimento que apresentar sinais de início de hidratação (empedramento).

Em caso de dúvida quanto à adequação do material, o mesmo deverá ser submetido a ensaios de verificação previstos na NBR-5741.

O armazenamento deverá ser feito em local coberto e ventilado (mas ao abrigo de correntes de ar, principalmente em dias úmidos). Os sacos deverão ser estocados sobre estrado de madeira distante cerca de 30cm do piso e paredes, e 50cm do teto. O empilhamento deverá ser feito com no máximo 10 sacos ou, caso o período de armazenagem seja inferior a 15 dias, 15 sacos. Esta medida tem como objetivo evitar o empedramento do cimento por compressão excessiva.

Na impossibilidade de estocar em local coberto, os sacos deverão ser protegidos com lona plástica impermeável e de cor clara.

A ordem de disposição no depósito deve ser tal que permita sempre o consumo do recebido anteriormente.

3.4 Agregados

Os agregados não poderão ser reativos com o cimento, e deverão ser suficientemente estáveis diante da ação dos agentes externos com os quais estarão a obra em contato.

A estocagem deverá ser feita de modo a não permitir a junção de dois ou mais tipos diferentes de agregado, ou a contaminação por materiais estranhos como terra, mato, gravetos, etc.

Para evitar que porções inferiores da pilha de agregados tenham umidade superior às das porções superiores, recomenda-se o desprezo de uma faixa de agregados de 15 centímetros próxima ao solo, que deverá ser previamente inclinado para permitir a drenagem. Este procedimento evita também a contaminação do agregado com o solo. Recomenda-se, ainda, que as pilhas tenham no máximo 1,5 m de altura.

Tendo em vista que a elevação de temperatura dos agregados altera a trabalhabilidade do concreto fresco, podendo até causar fissuras na fase de endurecimento, recomenda-se abrigá-los da incidência direta do sol, principalmente no verão. Caso isto não seja possível, aconselha-se, para o agregado graúdo, o

CNPJ 35.949.131/0001-02 - CREA-SC - 174.451-0 Rua Carlos Gosmes, 14 - Sala 05, Centro, Concórdia - SC

umedecimento da pilha em tempo suficiente para que permita a evaporação do excesso de umidade antes da utilização do material.

Os agregados deverão estar isentos de substâncias prejudiciais, tais como torrões de argila, materiais friáveis, materiais carbonosos, materiais pulverulentos, matéria orgânica, etc., que possam vir a diminuir sua aderência à pasta de cimento, ou que prejudiquem as reações de pega e endurecimento do concreto, o que afetaria sua resistência mecânica e durabilidade. Além disso, as presenças de tais substâncias provocariam a desagregação do concreto.

A qualificação de um agregado, graúdo ou miúdo, para o emprego em concretos estruturais baseia-se no atendimento das exigências mínimas preconizadas pela NBR-7211 e NBR-12654. Esta qualificação deverá ser comprovada mediante documento entregue pelo fornecedor, representativo de um período máximo de seis meses de produção.

De acordo com a NBR-7211, agregados miúdos são areias de origem natural ou resultantes do britamento de rochas estáveis, ou a mistura de ambos, cujos grãos passam pela peneira #4.8mm, e ficam retidos na peneira #0,075 mm. A carência de finos no lote de agregados miúdos pode gerar coesão deficiente do concreto fresco, permitindo a ocorrência de segregação e fuga de nata de cimento, além de dificultar as operações de lançamento e acabamento do concreto (a mistura apresentar-se-ia "áspera"). Por outro lado, um excesso de finos pode resultar na necessidade de adição de mais água para manutenção de trabalhabilidade. Com isso, se não for aumentado o teor de cimento da mistura, haverá redução da resistência mecânica do concreto e da sua durabilidade.

Segundo a NBR-7211, os agregados graúdos são pedregulhos de origem natural ou britas obtidas de rochas estáveis, ou a mistura de ambos, cujos grãos passam por uma peneira com abertura nominal de 152 mm e ficam retidos na peneira #4.8 mm. A utilização de agregados graúdos de maiores dimensões gera concretos mais resistentes, devido tanto à menor quantidade de pasta de cimento para uma mesma trabalhabilidade, quanto pelo maior volume de partículas mais resistentes no concreto.

O agregado empregado na fabricação do concreto pré-moldado será a brita tamanho máximo 19mm, para melhor aparência da peça.

3.5 Água

A água utilizada para amassamento do concreto deverá ser analisada quando não se conhecerem antecedentes de sua utilização em concretos estruturais, ou quando existirem dúvidas quanto à sua qualidade.

A utilização de água inadequada pode gerar alterações nos tempos de início e fim de pega, redução da resistência mecânica, corrosão das armaduras, eflorescências e ações negativas sobre a durabilidade do concreto.

Devido à alta concentração de sais de cloro nas águas do mar, as mesmas jamais devem ser utilizadas para amassamento de concreto estrutural armado.

3.6 Aditivo

Os aditivos só poderão ser usados quando previstos no projeto e especificações ou, ainda, após a aprovação da FISCALIZAÇÃO. Estarão limitados aos teores recomendados pelo fabricante, observado o prazo de validade;

CNPJ 35.949.131/0001-02 - CREA-SC - 174.451-0 Rua Carlos Gosmes, 14 - Sala 05, Centro, Concórdia - SC

Só poderão ser usados os aditivos que tiverem suas propriedades atestadas por Laboratório nacional especializado e idôneo.

O emprego de doses inadequadas pode causar efeitos contrários aos esperados, além de problemas patológicos no concreto. A dosagem de aditivo, portanto, deve ser muito precisa em obra, sendo seu uso recomendado somente em obras onde haja controle de qualidade dos materiais, da dosagem e da execução.

Como regra geral, recomenda-se que se evite o emprego de aditivos, recorrendo ao uso de materiais, dosagem, mistura, lançamento e cura para obtenção de concretos com as propriedades desejadas. Caso seja absolutamente necessário o emprego de aditivos, dever-se-á procurar utilizar aqueles já reconhecidos pela boa prática.

3.7 Dosagem

O estabelecimento do traço do concreto será função da dosagem experimental (racional), na forma preconizada na NBR 6118/2014, de maneira que se obtenha, com os materiais disponíveis, um concreto que satisfaça às exigências do projeto a que se destina (fck), que deverá resultar num produto final homogêneo e com traço que assegure massa trabalhável de acordo com as dimensões e a armadura dos elementos estruturais, bem como, com os processos de lançamento e adensamento utilizados.

A granulometria, forma e proporção dos agregados, quantidade e tipo de cimento, o fator água/cimento e a presença de aditivos são fatores que influenciarão diretamente na trabalhabilidade de uma mistura. Assim sendo, tais fatores devem, por ocasião da dosagem, ser avaliados e otimizados.

Todas as dosagens de concreto serão caracterizadas pelos seguintes elementos:

- Resistência de dosagem aos 28 dias (fck28);
- Dimensão máxima característica (diâmetro máximo) do agregado em função das dimensões das peças a serem concretadas;
- Consistência medida através de "slump-test", de acordo com o método NORMATIVO
- Granulométrica dos agregados;
- Fator água/cimento em função da resistência e da durabilidade desejadas;
- Controle de qualidade a que será submetido o concreto;
- Adensamento a que será submetido o concreto;
- Índices físicos dos agregados (massa especifica, peso unitário, coeficiente de inchamento e umidade).

3.8. Mistura e Adensamento

O adensamento deverá estar conforme NBR 6118/2014 mais o seguinte:

Somente será admitido o adensamento manual em peças de pequena responsabilidade estrutural, a critério da FISCALIZAÇÃO. As camadas não deverão exceder a 20 cm de altura.

O adensamento será cuidadoso, de forma que o concreto ocupe todos os recantos da fôrma

Serão adotadas precauções para evitar vibração da armadura, de modo a não formar vazios ao seu redor nem dificultar a aderência com o concreto.

CNPJ 35.949.131/0001-02 - CREA-SC - 174.451-0 Rua Carlos Gosmes, 14 - Sala 05, Centro, Concórdia - SC

Os vibradores de imersão não serão deslocados horizontalmente. A vibração será apenas a suficiente para que apareçam bolhas de ar e uma fina película de água na superfície do concreto.

A vibração será feita a uma profundidade não superior à agulha do vibrador. As camadas a serem vibradas terão, preferencialmente, espessura equivalente a 3/4 do comprimento da agulha.

As distâncias entre os pontos de aplicação do vibrador serão da ordem de 6 a 10 vezes o diâmetro da agulha (aproximadamente 1,5 vez o raio de ação). É aconselhável a vibração por períodos curtos em pontos próximos, ao invés de períodos longos num único ponto ou em pontos distantes.

Será evitada a vibração próxima às fôrmas (menos de 100 mm), no caso de se utilizar vibrador de imersão.

A agulha será sempre introduzida na massa de concreto na posição vertical, ou, se impossível, com a inclinação máxima de 45°, sendo retirada lentamente para evitar formação de buracos que se encherão somente de pasta. O tempo de retirada da agulha pode estar compreendido entre 2 ou 3 segundos ou até 10 a 15 segundos, admitindo-se, contudo, maiores intervalos para concretos mais secos, ouvida previamente a FISCALIZAÇÃO, que decidirá em função da plasticidade do concreto. Na vibração por camadas, far-se-á com que a agulha atinja a camada subjacente para assegurar a ligação duas a duas.

Admitir-se-á a utilização, excepcionalmente, de outros tipos de vibradores (fôrmas, réguas, etc.).

A mistura local, para concreto estrutural deverá ser, obrigatoriamente, mecânica. Em dias quentes recomenda-se a molhagem prévia da cuba da betoneira e dos agregados graúdos, com o objetivo de reduzir a temperatura e consequentemente, a evaporação de água da mistura, o que poderia afetar as suas características.

Observar a capacidade da betoneira, lembrando que o volume de concreto misturável corresponde a cerca de 30 a 40% de sua capacidade nominal, a fim de se obter uma mistura homogênea.

O tempo de mistura dos materiais dependerá do número de rotações do misturador. Caso o tempo mínimo de mistura não seja obedecido, pode haver prejuízo para a homogeneidade e a resistência do concreto. A NBR-12655 recomenda um tempo mínimo de mistura de 60 segundos, aumentando-se 15 segundos para cada metro cúbico de capacidade nominal da betoneira, ou conforme especificação do fabricante. O prolongamento deste tempo na razão de três vezes do limite mínimo causará um certo enrijecimento do concreto prejudicando, consequentemente, a trabalhabilidade e favorecendo a segregação.

A relação à ordem de colocação dos materiais na betoneira recomenda-se o que segue:

- 1 100% do agregado graúdo;
- 2 50% da água de amassamento;
- 3 100% do cimento:
- 4 50% da água de amassamento;
- 5 100% do agregado miúdo.

Cabe lembrar que a ordem em que os materiais são colocados na betoneira, influi diretamente na trabalhabilidade do concreto e na aderência pasta/agregado e, deste modo, na resistência do concreto.

CNPJ 35.949.131/0001-02 - CREA-SC - 174.451-0 Rua Carlos Gosmes, 14 - Sala 05, Centro, Concórdia - SC

3.9. Transporte do Concreto

O transporte do concreto será efetuado de maneira que não haja segregação ou desagregação de seus componentes, nem perda sensível de qualquer deles por vazamento ou evaporação.

Neste sentido, quando transportado em carrinhos de mão ou elevadores, dever-se-á evitar vibrações que possam causar segregação. Concretos de consistência fluída (abatimento > 70mm no ensaio de consistência), são facilmente segregáveis neste tipo de transporte.

A perda da trabalhabilidade poderá se dar pela evaporação da água, pelo início das reações de hidratação do cimento, pela perda de pasta que fica aderida à betoneira ou, ainda, devido aos elementos utilizados no transporte. Nestes casos, de forma alguma deverá ser adicionada mais água à mistura para melhoria da trabalhabilidade, sem avaliação da necessidade de uma nova dosagem de materiais, sob o risco de se ter significativa redução da resistência mecânica do concreto quando endurecido e prejuízo à sua durabilidade. Neste sentido, quando transportado em carrinhos de mão ou elevadores, dever-se-á evitar vibrações que possam causar segregação. Concretos de consistência fluída (abatimento > 70mm no ensaio de consistência), são facilmente segregáveis neste tipo de transporte.

Poderão ser utilizados na obra, para transporte do concreto da betoneira ao ponto de descarga ou local da concretagem, carrinhos de mão com roda de pneu, jericas, caçambas, pás mecânicas, etc., não sendo permitido, em hipótese alguma, o uso de carrinhos com roda de ferro ou borracha maciça.

No bombeamento do concreto, deverá existir um dispositivo especial na saída do tubo para evitar a segregação. O diâmetro interno do tubo será, no mínimo, 3 vezes o diâmetro máximo do agregado, quando utilizada brita, e 2,5 vezes o diâmetro, no caso de seixo rolado.

O transporte do concreto não excederá ao tempo máximo permitido para seu lançamento, que é de 1 hora.

Sempre que possível, será escolhido sistema de transporte que permita o lançamento direto nas fôrmas. Não sendo possível, serão adotadas precauções para manuseio do concreto em depósitos intermediários.

O transporte a longas distâncias só será admitido em veículos especiais dotados de movimentos capazes de manter uniforme o concreto misturado.

No caso de utilização de carrinhos ou padiolas (jericas), buscar-se-ão condições de percurso suave, tais como rampas, aclives e declives, inclusive estrados.

Quando os aclives a vencer forem muito grandes (caso de 1 ou mais andares), recorrer-se-á ao transporte vertical por meio de elevadores de obra (guinchos).

3.10 Lançamento

Conforme NBR 6118/2014, mais o seguinte:

Competirá ao CONSTRUTOR informar, com oportuna antecedência, à FISCALIZAÇÃO: dia e hora do início das operações de concretagem estrutural, tempo previsto para sua execução e os elementos a serem concretados.

Não será permitido o lançamento do concreto de altura superior a 2 m para evitar segregação. Em quedas livres maiores, utilizar-se-ão calhas apropriadas; não sendo possíveis as calhas, o concreto será lançado por janelas abertas na parte lateral ou por meio de funis ou trombas.

CNPJ 35.949.131/0001-02 - CREA-SC - 174.451-0 Rua Carlos Gosmes, 14 - Sala 05, Centro, Concórdia - SC

Nas peças com altura superior a 2 m, com concentração de armaduras e de difícil lançamento, além dos cuidados do item anterior será colocada no fundo da fôrma uma camada de argamassa de 5 a 10 cm de espessura, feita com o mesmo traço do concreto que vai ser utilizado, evitando-se com isto a formação de "nichos de pedras".

Será de 1 hora o intervalo máximo de tempo permitido entre o término do amassamento do concreto e o seu lançamento.

Quando do uso de aditivos retardadores de pega, o prazo para lançamento poderá ser aumentado em função das características do aditivo, a critério da FISCALIZAÇÃO. Em nenhuma hipótese será permitido o lançamento após o início da pega.

Não será permitido o uso de concreto remisturado.

Nos lugares sujeitos à penetração de água, serão adotadas providências para que o concreto não seja lançado havendo água no local; e mais, a fim de que, estando fresco, não seja levado pela água de infiltração.

As concretagens deverão ser precedidas de acurada verificação das formas e armaduras, em todos seus aspectos. Previamente deverá ser garantida a suficiência de materiais, pessoal e equipamentos, a fim de evitar descontinuidades imprevistas.

As formas deverão estar devidamente preparadas para receberem o concreto, isto é, isentas de qualquer material estranho. A existência de janelas nas formas, principalmente em elementos verticais, facilitará a limpeza.

Caso as formas sejam absorventes, as mesmas deverão ser umedecidas para não reterem a água de amassamento do concreto.

O lançamento do concreto deverá ser feito em camadas sucessivas com altura entre 40 e 50cm quando da utilização de adensamento mecânico, e de cerca de 20cm para adensamento manual.

Quando o lançamento for feito através de bombas ou tremonhas, a extremidade da mesma deverá estar muito próxima ou praticamente submersa no concreto, e ir subindo à medida que a concretagem tenha andamento, isto a fim de evitar a queda livre do concreto e sua segregação.

Quando houver necessidade de interrupção da concretagem, a posição da junta deverá ser escolhida previamente, em pontos da estrutura onde os esforços atuantes sejam mínimos. Neste aspecto, recomenda-se dispor as juntas a aproximadamente 1/5 do vão a partir dos apoios, tanto em vigas como em laies.

As superfícies de contato entre o concreto "velho" e o concreto "novo" são suscetíveis à formação de ninhos de concretagem, caracterizando-se como locais de aderência deficiente. Caso não sejam inadequadamente executadas poderão vir a afetar a estangueidade, resistência mecânica e a durabilidade da estrutura.

Para concretagem em contato direto com o solo, em todas as superfícies de terra contra as quais o concreto será lançado deverão ser compactadas e livres de água empoçada, lama ou detritos. Solos menos resistentes deverão ser removidos e substituídos por concreto magro ou por solos selecionados e compactados até a densidade das áreas vizinhas. A superfície do solo deverá ser convenientemente umedecida antes do lançamento.

Qualquer imperfeição ou falha de concretagem deverá ser objeto de estudos por engenheiro habilitado e experiente nesta área técnica, não se admitindo uso de

CNPJ 35.949.131/0001-02 - CREA-SC - 174.451-0 Rua Carlos Gosmes, 14 - Sala 05, Centro, Concórdia - SC

materiais diversos de argamassas minerais especiais para reparos superficiais ou grautes e micro concretos aditivados para reparos profundos.

A concretagem seguirá rigorosamente o programa de lançamento preestabelecido para o projeto.

Não será permitido o "arrastamento" do concreto, pois o deslocamento da mistura com enxada, sobre fôrmas, ou mesmo sobre o concreto já aplicado, poderá provocar perda da argamassa por adesão aos locais de passagem. Caso seja inevitável, poderá ser admitido, a critério da FISCALIZAÇÃO, o arrastamento até o limite máximo de 3 m.

3.11. Cura do Concreto

Conforme NBR 6118/2014, mais as disposições seguintes:

Enquanto não atingir endurecimento satisfatório, o concreto deverá ser protegido contra agentes prejudiciais, tais como mudanças bruscas de temperatura, secagem, chuva torrencial, agentes químicos, bem como contrachoques ou vibrações de intensidade tal que possa produzir fissuração na massa do concreto ou prejudicar a sua aderência à armadura.

A cura terá por objetivo principal manter a água de amassamento no interior da massa de concreto durante os primeiros dias, período este que compreende a pega e o início do endurecimento, ou até que o desenvolvimento das reações de hidratação tenha alcançado níveis satisfatórios, evitando assim, a formação de fissuras.

Dependendo das condições locais, dimensões e posição dos elementos, poder-se-á optar entre os seguintes métodos de cura consagrados pela prática:

- Lâmina de água;
- Camada de areia saturada:
- Camada de serragem saturada;
- Sacos de pano com material úmido;
- Umedecimento das formas.

A pulverização de água sobre o concreto como método de cura somente poderá ser empregada quando houver um controle rigoroso de periodicidade da molhagem, sob o risco de ocorrência de fissuramento do concreto pela alternância de ciclos molhagem/secagem.

No caso de cura úmida, o processo deverá iniciar assim que o concreto atingir um grau de endurecimento satisfatório.

Os tempos ideais de cura do cimento são os apresentados a seguir:

- Cimento Portland comum:
- Tempo mínimo de cura: 7 dias
- Tempo ideal de cura: 14 dias

3.12 Equipamentos

O CONSTRUTOR manterá permanentemente na obra, como mínimo indispensável para execução do concreto, 1 betoneira e 2 vibradores. Caso seja usado concreto pré-misturado, torna-se dispensável a exigência da betoneira.

CNPJ 35.949.131/0001-02 - CREA-SC - 174.451-0 Rua Carlos Gosmes, 14 - Sala 05, Centro, Concórdia - SC

Poderão ser empregados vibradores de imersão, vibradores de fôrma ou réguas vibradoras, de acordo com a natureza dos serviços executados e desde que satisfaçam à condição de perfeito adensamento do concreto.

A capacidade mínima da betoneira será a correspondente a 1 traço com consumo mínimo de 1 saco de cimento.

Serão permitidos todos os tipos de betoneira, desde que produzam concreto uniforme e sem segregação dos materiais.

3.13. Execução

A execução de qualquer parte da estrutura implica integral responsabilidade do CONSTRUTOR, quanto à sua resistência e estabilidade.

3.14. Juntas de Concretagem

Conforme NBR 6118/2014 e demais especificações a seguir:

Durante a concretagem poderão ocorrer interrupções previstas ou imprevistas. Em qualquer caso, a junta então formada denomina-se fria, se não for possível retomar a concretagem antes do início da pega do concreto já lançado.

Cuidar-se-á para que as juntas não coincidam com os planos de cisalhamento. As juntas serão localizadas onde forem menores os esforços de cisalhamento.

Quando não houver especificação em contrário, as juntas em vigas serão feitas, preferencialmente, em posição normal ao eixo longitudinal da peça (juntas verticais). Tal posição será assegurada através de fôrma de madeira, devidamente fixada.

A concretagem das vigas atingirá o terço médio do vão, não se permitindo juntas próximas aos apoios.

As juntas verticais apresentam vantagens pela facilidade de adensamento pois é possível fazer-se fôrmas de sarrafos verticais. Estas permitem a passagem dos ferros de armação e não do concreto, evitando a formação da nata de cimento na superfície, que se verifica em juntas inclinadas.

As juntas permitirão a perfeita aderência entre o concreto já endurecido e o que vai ser lançado, devendo, portanto, a superfície das juntas receber tratamento com escova de aço, jateamento de areia ou qualquer outro processo que proporcione a formação de re-dentes, ranhuras ou saliências. Tal procedimento será efetuado após o início de pega e quando a peça apresentar resistência compatível com o trabalho a ser executado.

Quando da retomada da concretagem, a superfície da junta concretada anteriormente será preparada efetuando-se a limpeza dos materiais pulverulentos, nata de cimento, graxa ou quaisquer outros prejudiciais à aderência, e procedendo-se a saturação com jatos de água, deixando a superfície com aparência de "saturada superfície seca", conseguida com a remoção do excesso de água superficial.

Especial cuidado será dado ao adensamento junto a "interface" entre o concreto já endurecido e o recém-lançado, a fim de se garantir a perfeita ligação das partes.

Nos casos de juntas de concretagem não previstas, quando do lançamento de concreto novo sobre superfície antiga, poderá ser exigido, a critério da FISCALIZAÇÃO, o emprego de adesivos estruturais.

CNPJ 35.949.131/0001-02 - CREA-SC - 174.451-0 Rua Carlos Gosmes, 14 - Sala 05, Centro, Concórdia - SC

3.15. Inspeção do Concreto

Na hipótese de ocorrência de lesões, como "ninhos de concretagem", vazios ou demais imperfeições, a FISCALIZAÇÃO fará exame da extensão do problema e definirá os casos de demolição e recuperação de peças.

Em caso de não-aceitação, por parte da FISCALIZAÇÃO, do elemento concretado, o CONSTRUTOR se obriga a demoli-lo imediatamente, procedendo à sua reconstrução, sem ônus para o MUNICÍPIO.

As imperfeições citadas serão corrigidas conforme descrito nos itens a seguir:

Desbaste com ponteira da parte imperfeita do concreto, deixando-se a superfície áspera e limpa.

Preenchimento do vazio com argamassa de cimento e areia no traço 1:3, usando adesivo estrutural à base de resina epóxi. No caso de incorreções que possam alterar a seção de cálculo da peça, substituir-se-á a argamassa por concreto no traço 1:2:2.

Quando houver umidade ou infiltração de água, o adesivo estrutural será substituído por impermeabilizante de pega rápida, submetendo-se o produto a ser usado à apreciação da FISCALIZAÇÃO, antes da utilização.

A FISCALIZAÇÃO procederá, posteriormente, a um segundo exame para efeito de aceitação.

4 Fôrmas

As fôrmas e escoramentos obedecerão aos critérios da NBR 7190/2022 e da NBR 8800/2008

As formas deverão ser executadas rigorosamente conforme as dimensões indicadas em projeto, com materiais de boa qualidade e adequados ao tipo de acabamento pretendido para as superfícies das peças concretadas. Todas as formas deverão ser fabricadas com materiais estáveis em presença de água, entende-se como tal aqueles capazes de enfrentar as intempéries em prazo previsto para seu uso.

Tendo em vista que eventuais movimentações das formas que se produzirem entre o momento do lançamento do concreto e o início da pega, poderão causar o aparecimento de fissuras, as formas deverão ser dimensionadas de modo que não possam sofrer deformações prejudiciais, quer sob a ação dos fatores ambientais, quer sob a carga, especialmente do concreto fresco, considerando nesta o efeito do adensamento sobre o empuxo do concreto.

As formas compõem uma estrutura sob responsabilidade do engenheiro responsável pela execução, a quem cabe providenciar sua estabilidade antes, durante e, pelo prazo necessário, após as concretagens, sem deformações laterais ou verticais, impedindo, assim, a introdução de quaisquer malformações na estrutura permanente de concreto. Além disto, deverão ser capazes de auxiliar a manutenção das armaduras em suas corretas posições, sem deslocamentos que alterem seus desempenhos no interior das peças de concreto.

Deverão ainda ser tomados cuidados nas emendas dos diversos componentes das formas, bem como com o emprego de aditivos desformantes, pois os mesmos poderão vir a causar manchas no concreto.

Deverão ser evitadas vibrações excessivas causadas pelo tráfego de veículos, pessoas ou equipamentos sobre as formas, ou ainda pela utilização incorreta de vibradores.

CNPJ 35.949.131/0001-02 - CREA-SC - 174.451-0 Rua Carlos Gosmes, 14 - Sala 05, Centro, Concórdia - SC

Antes do lançamento do concreto as juntas das formas deverão ser vedadas e as superfícies que ficarão em contato com o concreto deverão estar isentas de impurezas prejudiciais à qualidade do acabamento. As formas deverão ser molhadas até a saturação.

Cada pontalete de madeira só poderá ter uma emenda, a qual não deverá ser feita no terço médio do seu comprimento. Nas emendas, os topos das duas peças deverão ser planos e normais ao eixo comum. Deverão ser afixadas com sobrejuntas em toda a volta das emendas.

As fôrmas de superfícies curvas serão apoiadas sobre cambotas de madeira préfabricadas. O CONSTRUTOR, para esse fim, procederá à elaboração de desenhos de detalhes dos escoramentos, submetendo-os oportunamente a exame e autenticação da FISCALIZAÇÃO.

Os andaimes deverão ser perfeitamente rígidos, impedindo, desse modo, qualquer movimento das fôrmas no momento da concretagem. É preferível o emprego de andaimes metálicos.

5 ESCORAMENTO

Deverá ser executado escoramento de modo que este não sofra, sob a ação de seu peso, do peso da estrutura e das cargas acidentais que possam atuar durante o andamento da obra, deformações prejudiciais à forma da estrutura ou que possam causar esforços no concreto na fase de cura.

As escoras deverão ter dimensões compatíveis com o espaçamento projetado, sob o risco de ocorrer flambagem das mesmas. No caso de cargas elevadas, recomendase aumentar a seção das escoras, ao invés de reduzir o espaçamento entres as mesmas, a fim de não prejudicar as condições de movimentação de pessoal e equipamentos.

No caso de escoras apoiadas no solo, e em caso de dúvida quando à capacidade de suporte deste, o mesmo deverá ser compactado ou revestido com material resistente.

6. DESMOLDAGEM DE FÔRMAS E ESCORAMENTOS

A retirada das fôrmas obedecerá a NBR 6118/2014, atentando-se para os prazos recomendados:

As formas e o escoramento deverão ser mantidos no local o tempo suficiente para que o concreto desenvolva as resistências previstas, para evitar a deformação excessiva do conjunto e consequente formação de fissuras.

Da mesma forma, o carregamento da estrutura poderá se processar somente quando o concreto apresentar resistência suficiente.

Sabe-se que a relação entre a tensão e a deformação do concreto é função do tempo. Sob uma tensão constante (carga), há um aumento progressivo da deformação com o tempo, sendo que a deformação final pode ser bem maior que a deformação que ocorre no momento da aplicação da carga (deformação elástica instantânea). Este fenômeno é denominado fluência. Dentre os inúmeros fatores que afetam a fluência de uma peça de concreto, pode-se destacar como um dos mais importantes a resistência do concreto no momento da aplicação da carga. Dentro de amplos limites, a fluência é inversamente proporcional à resistência do concreto no

CNPJ 35.949.131/0001-02 - CREA-SC - 174.451-0 Rua Carlos Gosmes, 14 - Sala 05, Centro, Concórdia - SC

momento da aplicação do carregamento. Portanto, todo e qualquer fator que influir no desenvolvimento das resistências do concreto, estará, consequentemente, afetando o fenômeno da fluência.

A retirada das formas deverá obedecer, no mínimo, o seguinte cronograma:

- Faces laterais: 3 dias
- Faces inferiores com pontaletes bem encunhados: 14 dias
- Faces inferiores sem pontaletes: 21 dias

No caso de se deixar pontaletes após a desforma, estes não deverão ser colocados em posições tais que possam produzir esforços contrários àqueles para os quais a peça foi projetada. Um exemplo comum deste erro é a permanência de escoras somente na extremidade de lajes em balanço, fazendo com que a mesma se comporte como bi-apoiada, resultando, na maioria dos casos, em deformações excessivas na peça e fissuramento da mesma.

7 ARMADURAS

As barras de aço não deverão apresentar excesso de ferrugem, manchas de óleo, argamassa aderente ou qualquer outra substância que impeça uma perfeita aderência ao concreto. Serão adotadas precauções para evitar oxidação excessiva das barras de espera, as quais, antes do início da concretagem, deverão estar limpas.

A armadura não poderá ficar em contato direto com a fôrma, obedecendo-se para isso à distância mínima prevista na NBR 6118-2014 e no projeto estrutural. Para isso serão empregados afastadores de armadura dos tipos "clips" plásticos ou pastilhas de argamassa.

Todas armaduras serão constituídas em aço CA-50A e CA-60, conforme especificações constantes no projeto.

Deverão ser evitadas barras de aço estocadas inadequadamente por longo tempo devido às alterações de diâmetro induzidas por corrosão e oxidação. As barras deverão estar perfeitamente limpas, sem quaisquer resquícios de materiais graxos e óleos nas superfícies, a fim de evitar deficiências de aderência ao concreto.

O armazenamento das barras de aço far-se-á tomando o cuidado de deixar as barras afastadas cerca de 30cm do solo, que deverá estar coberto por uma camada de brita, a fim de evitar danos oriundos do excesso de umidade e agentes biológicos. Além disso, a proteção com lona plástica também é recomendada.

As armaduras deverão ser executadas de acordo com o projeto, observando-se rigorosamente as características do aço, número de camadas, dobramento de estribos e das barras retas ou dobradas. O espaçamento entre camadas deverá ser de 2cm.

O aparelhamento das barras deverá atentar para os diâmetros de dobramento de cada bitola preconizados pela NBR-6118, para evitar escoamento e fragilização antes da introdução dos carregamentos de serviço.

Após armadas, as barras deverão manter suas posições se deformações até e durante a concretagem, de maneira a desempenhar suas funções nas seções de concreto armado.

Cuidados especiais deverão ser tomados para providenciar o cobrimento protetor especificado, de maneira a garantir vida útil compatível com os níveis de agressão do ambiente em que estará inserida a peça.

CNPJ 35.949.131/0001-02 - CREA-SC - 174.451-0 Rua Carlos Gosmes, 14 - Sala 05, Centro, Concórdia - SC

Dever-se-á considerar a rigidez da armadura e as características do elemento estrutural na definição do espaçamento e distribuição dos afastadores de armadura dos tipos "clips" plásticos (figura 02), ou pastilhas de argamassa, que não deverão distar mais de 1.5m entre si. Não deverão ser utilizadas barras de aço, brita ou outros elementos semelhantes como espaçadores entre barras ou entre barra e forma. Também não será permitido elevar a armadura após o lançamento do concreto.

Não cometer excessos na aplicação de líquidos desmoldantes, sob pena de prejudicar seriamente o cobrimento protetor das armaduras.

Jamais fazer "garrafa" nas esperas dos pilares, para evitar "engaiolamento" do concreto com a formação de vazios no pé destes elementos.

As diferentes partidas de ferro serão depositadas e arrumadas de acordo com a bitola, em lotes aproximadamente iguais de acordo com as normas, separados uns dos outros, de modo a ser estabelecida fácil correspondência entre os lotes e as amostras retiradas para ensaios.

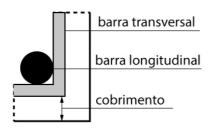


Figura 02 - Cobrimento da armadura e Espaçador plástico

8. DISPOSIÇÕES DIVERSAS

Nenhum conjunto de elementos estruturais (pilares, vigas, lajes montantes, etc.) poderá ser concretado sem prévia e minuciosa verificação, por parte do CONSTRUTOR e da FISCALIZAÇÃO, da perfeita disposição, dimensões, ligações e escoramentos das fôrmas e armaduras correspondentes, bem como, sem prévio exame da correta colocação de canalizações elétricas, hidráulicas e outras que devam ficar embutidas na massa do concreto.

As furações para passagem de canalização através de vigas ou outros elementos estruturais, quando não previstas em projeto, serão guarnecidas com buchas ou caixas localizadas nas fôrmas. A localização e dimensões de tais furos, serão objeto de atento estudo do CONSTRUTOR no sentido de evitar-se enfraquecimento prejudicial à segurança da estrutura. Antes da execução, serão submetidas à aprovação da FISCALIZAÇÃO.

Como diretriz geral, nos casos em que não haja indicação precisa no projeto estrutural, haverá a preocupação de situar os furos, tanto quanto possível, na zona de tração das vigas ou outros elementos atravessados.

CNPJ 35.949.131/0001-02 - CREA-SC - 174.451-0 Rua Carlos Gosmes, 14 - Sala 05, Centro, Concórdia - SC

Caberá inteira responsabilidade ao CONSTRUTOR pela execução de aberturas em peças estruturais, cumprindo-lhe propor a FISCALIZAÇÃO as alterações que julgar convenientes, tanto no projeto estrutural, quanto nos projetos de instalações.

9. TESTES

Os testes obedecerão ao contido nos itens anteriores sobre controle da resistência do concreto e demais especificações do presente caderno de encargos e projetos.

A partir dos resultados obtidos, o CONSTRUTOR deverá fornecer parecer conclusivo sobre a aceitação da estrutura conforme NBR 6118/2014, em 2 vias, a FISCALIZAÇÃO. Este devolverá uma das vias autenticada e, se for o caso, acompanhada de comentários.

A FISCALIZAÇÃO, poderá exigir do CONSTRUTOR, caso julgue necessário e independentemente da apresentação dos testes exigidos, a realização complementar de testes destrutivos e não destrutivos mencionados neste caderno de encargos e projeto.

Caso o resultado dos testes mencionados, não seja aceitável, o CONSTRUTOR arcará com todo o ônus que advenha dos testes mencionados no item anterior.

10. TESTES DESTRUTIVOS - CORPO DE PROVA

10.1 Definição

O presente ensaio tem por objetivo proporcionar informações sobre as propriedades do concreto executado na obra, em comparação com as características do projeto estrutural e das normas a seguir:

NBR-8953-2015- Concreto para fins estruturais - classificação por grupos de resistência

NBR-5738-2016- Moldagem e cura de corpos-de-prova de concreto, cilíndricos ou prismáticos

NBR-6118-2014- Projeto e execução de obra de concreto armado.

10.2. Moldagem e cura dos corpos-de-prova

A amostra destinada a moldagem deverá ser retirada de acordo com método apropriado conforme norma.

Na medida do possível, os corpos-de-prova deverão ser moldados em local próximo daquele em que devem ser armazenados nas primeiras 24 horas.

Deverão ser utilizadas fôrmas cilíndricas de altura igual a 2 vezes o diâmetro da base, sendo considerado padrão o cilindro 15 x 30 cm. As fôrmas são metálicas com espessuras compatíveis com as determinações da ABNT, devendo ser providas de dispositivos que impeçam a fuga de argamassa.

O concreto, deverá ser colocado em camadas compatíveis com o processo de adensamento a que será submetido, fazendo-se o adensamento manual com barra de ferro de 16 mm de diâmetro e altura de 60 cm, não podendo penetrar nas camadas já adensadas, observando-se mais o seguinte:

- Concretos mais fluidos: 4 camadas 30 golpes;
- Concretos razoavelmente trabalháveis: 6 camadas 60 golpes.

Após a colocação de cada camada terá início o adensamento.

CNPJ 35.949.131/0001-02 - CREA-SC - 174.451-0 Rua Carlos Gosmes, 14 - Sala 05, Centro, Concórdia - SC

A face superior será alisada com a haste ou com a régua metálica a fim de que o corpo tenha altura constante, o que se consegue com o nivelamento superior feito em duas direções perpendiculares. Evitam-se cavidades, colocando-se nos topos um pouco de argamassa colhida no próprio concreto.

E depois da desmoldagem, os corpos-de-prova deverão ser conservados em caixa de areia úmida com espessura mínima de 5 cm de areia cobrindo todas as faces do cilindro. A areia deverá ser mantida saturada depois de colocados os corpos-de-prova no lugar.

Tanto nos moldes como nas caixas, os corpos-de-prova deverão ser protegidos, devendo permanecer à temperatura ambiente do canteiro. No laboratório, a conservação será efetuada em atmosfera saturada de umidade e temperatura de 21 +/ 2°C.

Todos os corpos-de-prova deverão ser identificados, de forma que caracterizem:

- Procedência:
- Data da moldagem;
- Peça da estrutura onde se utilizou o concreto;
- Nome do moldador:
- Marca do cimento;
- Características dos agregados;
- Informações adicionais, tais como traço utilizado e consistência.

11. ACEITAÇÃO DA ESTRUTURA

Será feita conforme preconiza a NBR 6118/2014, no que se refere à aceitação automática da estrutura, fckest >= fck.

Constatado pela FISCALIZAÇÃO, elemento estrutural deficiente, correrão por conta do CONSTRUTOR as despesas referentes a ensaios especiais do concreto e da estrutura, bem como a demolição e reconstrução do elemento citado.

12 MEMÓRIA DE CÁLCULO

Neste item são feitos comentários sobre os diversos tipos de materiais, sendo que, suas observâncias nas etapas de concretagem no local da obra são indispensáveis para a perfeita execução da estrutura do projeto em questão.

Além dos materiais propriamente ditos, comentar-se-á a respeito da melhor forma de armazenamento, bem como dos procedimentos que deverão ser adotados para a execução das diversas etapas dos serviços.

12.1 Critérios de dimensionamento

Preferencialmente, o concreto estrutural será usinado, fornecido pelo construtor ou terceiro, oriundo de instalações adequadas, de acordo com as normas indicadas.

12.2 Resistência a compressão (classe)

O concreto empregado na execução da estrutura deverá possuir fck mínimo de 30 MPa, ou seja, classe C, conforme NBR6118:2014. Ao efetuar o pedido do concreto, solicitar o maior número de informações acerca do material, conforme especificado na sugestão de pedido.

CNPJ 35.949.131/0001-02 - CREA-SC - 174.451-0 Rua Carlos Gosmes, 14 - Sala 05, Centro, Concórdia - SC

12.3 Característica do concreto

Foi considerado um concreto com massa específica real normal, compreendida entre 2000 e2800 kg/m³ (concreto normal). Dentro desta faixa, foi adotada a massa específica de 2500 kg/m³, considerando já as armaduras, as principais características do concreto estão indicadas na tabela 03.

	CARACTERÍSTICAS DO CONCRETO						
Elemento	fck (kgf/cm²)	Ecs (kgf/cm²)	fct (kgf/cm²)	Abatimento (cm)	Coeficiente de dilatação térmica (/ºC)		
Pilares	300	260716	28.96	12.00	0.00001		
Blocos	300	260716	28.96	12.00	0.00001		

Tabela 02 – Característica do concreto

12.4 Classe de agressividade ambiental (CA)

A durabilidade da estrutura com adequada segurança, estabilidade e aptidão em serviço durante o período correspondente a vida útil da estrutura, para este projeto (reforço) foram adotados critérios em relação à classe de agressividade ambiental e valores de cobrimentos das armaduras, conforme apresentado nas tabelas a seguir.

DEFINIÇÃO DA CA						
Pavimento	Classe de agressividade ambiental	Agressividade	Risco de deterioração da estrutura			
Todos	II	moderada	pequeno			

Tabela 03 – Definição da classe de agressividade

DEFINIÇÃO DOS COBRIMENTOS					
Flamenta		Cobrimento (cr	n)		
Peças externa		Peças internas	Peças em contato com o solo		
Vigas	3.00	3.00	5.00		
Pilares	3.00	3.00	5.00		
Lajes	3.50	-	5.00		

CNPJ 35.949.131/0001-02 - CREA-SC - 174.451-0 Rua Carlos Gosmes, 14 - Sala 05, Centro, Concórdia - SC

Sapatas	5.00	5.00	5.00

Tabela 04 – Definição dos cobrimentos

12.5 Propriedade do concreto

Considera-se neste projeto que os esforços estruturais devem atender as características conforme a tabela 06.

	CARACTERÍSTICAS DO CONCRETO							
Elemento	fck	Ecs	fct	Abatimento	Coeficiente de dilatação térmica			
	(kgf/cm²)	(kgf/cm²)	(kgf/cm²)	(cm)	(/ºC)			
Vigas	300	206716	28.96	5.00	0.00001			
Pilares	300	206716	28.96	5.00	0.00001			
Lajes	300	206716	28.96	12.00	0.00001			
Sapatas	300	206716	28.96	12.00	0.00001			

Tabela 05 – Característica do concreto

12.6 Propriedade do aço

A estrutura de concreto armado projetada deve ser executada com aço classificado pela NBR 7480 com valor característico da resistência de escoamento nas categorias CA-60 e CA-50. Os diâmetros e seções transversais nominais devem ser os especificados nos detalhamentos, atendendo as prescrições da NBR 7480. Os fios e barras podem ser lisos ou com saliências (ou mossas). Para cada categoria e diâmetro, as saliências devem atender ao especificado na NBR 7480, conforma a tabela 06.

CARACTERÍSTICAS DO AÇO						
Categoria	Massa específica (kgf/m³)	Módulo de elasticidade (kgf/cm²)	fyk (kgf/cm²)			
CA50	7850	2100000	5000			
CA60	7850	2100000	6000			

Tabela 06 - Característica do aco

Outros parâmetros foram considerados de acordo com as prescrições normativas, como:

- Diagramas tensão-deformação (para tração e compressão);
- Características de ductilidade:

CNPJ 35.949.131/0001-02 - CREA-SC - 174.451-0 Rua Carlos Gosmes, 14 - Sala 05, Centro, Concórdia - SC

- Resistência a fadiga;
- Soldabilidade.

12.7 Coeficiente de ponderação

A obtenção dos valores de cálculo das ações, foram definidos coeficientes de

ponderação, conforme apresentado na tabela 07.

Ação	Coefic	ientes de ponde		Fatores de combinaçã		
•	Desfavorável	Favorável	Fundações	Psi0	Psi1	Psi2
Peso próprio (G1)	1.30	1.00	1.00	-	-	-
Adicional (G2)	1.40	1.00	1.00	-	-	-
Solo (S)	1.40	1.00	1.00	-	-	-
Retração (R)	1.20	0.00	1.00	-	-	-
Acidental (Q)	1.40	-	1.00	0.70	0.60	0.40
Água (A)	1.20	-	1.00	1.00	1.00	1.00
Subpressão (AS)	1.10	-	1.00	1.00	1.00	1.00
Temperatura 1 (T1)	1.20	-	1.00	0.60	0.50	0.30
Temperatura 2 (T2)	1.20	-	1.00	0.60	0.50	0.30
Vento X+ (V1)	1.40	-	1.00	0.60	0.30	0.00
Vento X- (V2)	1.40	-	1.00	0.60	0.30	0.00
Vento Y+ (V3)	1.40	-	1.00	0.60	0.30	0.00
Vento Y- (V4)	1.40	-	1.00	0.60	0.30	0.00
Desaprumo X+ (D1)	1.20	1.00	1.00	-	-	-
Desaprumo X- (D2)	1.20	1.00	1.00	-	-	-
Desaprumo Y+ (D3)	1.20	1.00	1.00	-	-	-
Desaprumo Y- (D4)	1.20	1.00	1.00	-	-	-

CNPJ 35.949.131/0001-02 - CREA-SC - 174.451-0 Rua Carlos Gosmes, 14 - Sala 05, Centro, Concórdia - SC

Tabela 07 – Coeficiente de ponderação / Fatores de combinações

12.8 Combinações das ações

As ações de carregamento definidas, obteve-se as seguintes combinações para análise e dimensionamento da estrutura nos estados limites (ELU) últimos e de serviço (ELS).

12.9 Combinações das ações

O efeito do vento sobre a edificação é avaliado a partir de diversos parâmetros que permitem definir as forças aplicadas sobre a estrutura (P-Delta). Portanto, os parâmetros adotados para consideração do vento são apresentados na tabela 08.

Parâmetros	Valor adotado	Observações		
Velocidade	40.00m/s	-		
Nível do solo (S2)	0.00cm	-		
Maior dimensão horizontal ou vertical (S2)	Maior que 50 m	-		
Rugosidade do terreno (S2)	Categoria II	Terrenos abertos em nível ou aproximadamente em nível, com poucos obstáculos isolados, tais como árvores e edificações baixas.		
Fator topográfico (S1)	1.0	Demais casos.		
Fator estatístico (S3)	1.00	Edificações para hotéis e residências. Edificações para comércio e indústria com alto fator de ocupação.		
Ângulo do vento em relação à horizontal	0°	Fth F		
Direções de aplicação do vento	Vento X+ (V1) Vento X- (V2) Vento Y+ (V3) Vento Y- (V4)	Ver combinações de ações.		

Tabela 08 - Ações de vento na estrutura

CNPJ 35.949.131/0001-02 - CREA-SC - 174.451-0 Rua Carlos Gosmes, 14 - Sala 05, Centro, Concórdia - SC

12.10 Imperfeições globais

Os parâmetros adotados para definição das imperfeições geométricas globais devido ao desaprumo dos elementos verticais para verificação do estado limitem último da estrutura estão demonstrados na tabela 9.

Parâmetros	Valor adotado	Observações
Direções de	Direção X	Ver combinações
aplicação	Direção Y	de ações.

Tabela 9 – Imperfeições geométricas globais

12.11 Modelo de análise

A análise da estrutura foi realizada a partir da criação de um modelo de pórtico, sendo a estrutura formada por pilares e vigas admitidos como elementos lineares representados por seus eixos longitudinais. As modelagens das lajes de concreto dos pavimentos foram realizadas pelo processo da analogia de grelha, onde as lajes são discretizadas em faixas substituídas por elementos estruturais de barras, obtendo-se assim uma grelha de barras plana interconectadas.

12.12 Verificação de estabilidade Global e não linearidade física

A análise global da estrutura é um importante instrumento de avaliação da estrutura, permitindo também avaliar a importância dos esforços de segunda ordem globais. Os parâmetros para avaliação de estabilidade global (Gama-Z e P-Delta), quando aplicáveis, poderão ser verificados nos resultados do dimensionamento.

Para consideração aproximada da não linearidade física, considerou-se a rigidez dos elementos estruturais conforme apresentado na tabela 10.

Rigidez das Vigas	0.40 Ec.lc
Rigidez dos Pilares	0.80 Ec.lc
Rigidez das Lajes	0.50 Ec.lc

Tabela 10 – Verificação de estabilidade

12.13 Verificação do deslocamento horizontal

A tabela 11, demonstra os resultados obtidos e os limites no dimensionamento quanto ao deslocamento horizontal do pórtico, assim sendo, a edificação atende os critérios e limites de deslocamento horizontal.

Direção	Valor Obtido (cm)	Limite (cm)
X+	0,21	0,69
X-	0,21	0,69
Y+	0,12	0,69

CNPJ 35.949.131/0001-02 - CREA-SC - 174.451-0 Rua Carlos Gosmes, 14 - Sala 05, Centro, Concórdia - SC

Y-	0,12	0,69

Tabela 11 – Deslocamento horizontal

12.14 Verificação de estabilidade

A tabela 12, demonstra que os resultados obtidos e os limites no dimensionamento, quanto a estabilidade global da edificação e quanto a incidência de vento nas mais variadas combinações, atendem os critérios globais de estabilidade.

Direção	Valor Obtido (cm)	Limite (cm)
X+	1,04	1,10
X-	1,06	1,10
Y+	1,04	1,10
Υ-	1,04	1,10

Tabela 12 – Valores obtidos da verificação de estabilidade

13 Considerações Finais

13.1Alterações de Projeto

Não será permitido nenhuma alteração de projetos sem prévia autorização do fiscal responsável pela obra, quando as especificações ou quaisquer outros documentos forem eventualmente omissos ou surgirem dúvidas na interpretação de qualquer peça gráfica ou outro elemento informativo, deverá sempre ser consultado a FISCALIZAÇÃO, que diligenciará no sentido de que a omissão ou dúvidas sejam sanadas em tempo hábil.

Se as circunstâncias ou as condições locais tornarem aconselhável a substituição de alguns materiais especificados, está substituição só poderá se efetuar mediante expressa autorização, por escrito, do autor de projeto, para cada caso particular.

13.2 Fiscalização

A construtora atuará na obra com profissionais habilitados, adiante designados por FISCALIZAÇÃO, com autoridade para exercer, toda e qualquer ação de orientação geral, controle e fiscalização das obras e serviços de construção.

A executora é obrigada a facilitar meticulosa fiscalização dos materiais, execução das obras e serviços contratados, facultando a fiscalização o acesso a todas as partes da obra contratada.

Obriga-se ainda, do mesmo modo, a facilitar à fiscalização em oficinas, depósitos, armazém e dependências onde se encontrem os materiais destinados à construção, serviços e ou obras e reparos mesmo que de propriedade de terceiros.

A executora é obrigada a retirar da obra, imediatamente depois de registrado no diário de obras, qualquer empregado, tarefeiro, operário ou subordinado seu que a critério da FISCALIZAÇÃO, venha demonstrando conduta nociva ou incapacidade técnica.

CNPJ 35.949.131/0001-02 - CREA-SC - 174.451-0 Rua Carlos Gosmes, 14 - Sala 05, Centro, Concórdia - SC

Em hipótese alguma deve ser retirado da obra o diário de obra contendo as informações dos serviços prestados diários, apenas sendo permitido a retirada da primeira via pelo fiscal responsável, para possíveis medições dos serviços prestados.

13.3 Obrigação da Executora

A executora assumirá integral responsabilidade pela boa execução e eficiência dos serviços que executar, de acordo com os projetos e especificações técnicas fornecidas, bem como, pelo eventualmente executor em desacordo com esses documentos e os danos decorrentes da realização dos ditos trabalhos. A executora, deverá emitir a referida ART pela execução da obra, quitando-a, entregando as vias correspondentes aos órgãos de controle e ao contratado a fiscalização.

Para equipamentos, mão-de-obra e materiais para obra e serviços que forem ajustados, caberá a EXECUTORA, fornecer e conservar, pelo período que for necessário, equipamentos e ferramentas adequadas a perfeita execução da obra, encarregar mão-de-obra idônea, de modo a reunir em serviço uma equipe homogênea e suficiente de operários, mestres, encarregados e engenheiros, que possam assegurar o progresso satisfatório as obras, bem como, obter os materiais necessários em quantidade suficientes a conclusão das obras e serviços no prazos pré-estabelecidos.

13.4 Aceitação final da obra de estrutura de concreto armado

Para a entrega final da obra os trabalhos deverão totalmente concluídos de acordo com os projetos e suas respectivas especificações técnicas, sendo que o local ser entregue completamente limpo, livre de entulhos e sobras de materiais provenientes da execução da obra e suas instalações.

Quando as obras ficarem inteiramente concluídas, de perfeito acordo com o projeto e suas especificações técnicas e satisfeitas todas as exigências deste material, será efetuada uma vistoria conjunta (EXCUTORA E FISCALIZAÇÃO), para o recebimento da obra.

Fica assim registrado esse memorial descritivo composto por 30 páginas, todas rubricadas e assinada na página final.

Concórdia – SC, março de 2023.

Jaime Fernando Schmidt Costa Engº Civil CREA/SC 031.169-5

CNPJ 35.949.131/0001-02 - CREA-SC - 174.451-0 Rua Carlos Gosmes, 14 - Sala 05, Centro, Concórdia - SC

ANEXO 1

Todo o cálculo e dimensionamento das peças, bem como, as definições e prescrições Normativas referentes aos materiais utilizados na edificação, foram baseados nos seguintes documentos:

•	NBR 6118:2003	Projeto e execução de obras em concreto armado e protendido;
•	NBR 8681:1984	Ações e Segurança nas Estruturas;
•	NBR 6120:1980	Cargas para o Cálculo de Estruturas de Edificações;
•	NBR 6123:1988	Ação do vento em edificações;
•	NBR 12655:1996	Preparo, controle e recebimento de concreto.
•	NBR 5738:2003	Concreto – Procedimento para moldagem e cura de corpos-de-
	prova.	
•	NBRNM 33:1998	Amostragem de concreto fresco (Norma Mercosul).
•	NBR 7212:1984	Execução de concreto dosado em central.
•	NBRNM 67:1998	Concreto – Determinação da consistência pelo abatimento do
	tronco de cone.	
•	NBR 5739:1994	Concreto – Ensaio de compressão de corpos de prova
	cilíndricos ou prism	náticos – Método de ensaio.
•	NBR 7191:1982	Execução de desenhos para obras de concreto simples ou
	armado.	
•	NBR 14931:2004	Execução de estruturas de concreto – Procedimento
•	NBR 7480:1996	Barras e fios de aço destinados a armaduras para concreto
	armado.	
•	NBR 14037	Manual de Uso, operação e manutenção em edificações.

Obs.: Devem ser atendidas e/ou observadas, todas as Referências Normativas de cada Norma especificada acima.

CNPJ 35.949.131/0001-02 - CREA-SC - 174.451-0 Rua Carlos Gosmes, 14 - Sala 05, Centro, Concórdia - SC

ANEXO 2

LINKS e CONTATOS

1. FERRARI ENGENHARIA LTDA.

Engenheiro Civil Jaime Fernando Schmidt Costa

CREA-SC: 03.1169-5

Travessa Lamonatto, 67 - Centro - Concórdia - SC

CEP: 89700-093 (49) 9 91076464

jaime@pericianaengenharia.com.br